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Abstract—Large and stochastic peak energy demands of
buildings contribute to grid inefficiency. Here, we present an
optimization algorithm for behind-the-meter peak shaving with
energy storage systems. We employ a Markov decision process to
execute charging and discharging decisions on sub-hourly time
scales according to the on-site energy profile and the size of the
energy storage system. The algorithm minimizes the peak load
drawn from the grid to maximize savings for the asset owner and
efficiency gains for the grid network. Our technology-agnostic
solution can serve battery energy storage systems and lesser-
studied use cases including pumped hydro storage and municipal
water systems. We demonstrate how the algorithm can inform
on sizing energy storage systems to best serve a given building.
With these contributions, we provide an AI platform to optimize
energy storage assets and smart grid systems.

Index Terms—artificial intelligence, demand-side management,
energy storage, optimization, smart grid

I. INTRODUCTION

Rapid population growth and technological progress has
greatly increased the demand for energy [1] [2]. The unsus-
tainable nature of fossil fuels has driven the energy market
to cleaner sources. Locally distributed renewable energy gen-
eration offers eco-friendly power with the primary drawback
of intermittent output [3] [4]. Likewise, many countries have
focused on improved efficiency due to recognizing that renew-
able energy sources are less capable to support the prevalent
energy waste that exists today [5].

The transition to renewable energy requires integrated en-
ergy storage to serve continuous loads and high peak demands
[6] [7]. A diverse and optimally-managed portfolio of energy
storage systems will greatly increase the reliability and cost-
effectiveness of a net zero energy network [8]. Such storage
devices ideally charge with excess renewable energy, discharge
when systemic demand is highest or intermittent output is
lowest, and incur minimal losses during energy storage and
dispatch.

Currently available energy storage technologies include bat-
teries, pumped hydro, compressed air, flywheels, and thermal
energy storage. While batteries receive the most attention,
pumped hydropower storage (PHS) remains the most mature
and widely-applied method for large electricity storage, with
global PHS capacity of 165 GW, including 25 GW of hybrid
power plants [8] [9] [10]. PHS benefits from high round-
trip efficiency, long-duration (seasonal) energy storage, and

fast ramping of power input/output [11]. These favorable
characteristics have inspired much research around PHS. For
instance, Bin Lu et al. [12] [13] found enormous global
potential for PHS, yet did not provide a detailed analysis of
costs or water availability. At smaller scales, Rogeau et al.
[14] quantified the potential for PHS systems in Europe and
Ghorbani et al. [15] investigated the potential for PHS systems
in Iran.

Crucially, these prior efforts overlooked the potential for
leveraging PHS within municipal infrastructure. For example,
the US consumes 260 billion kilowatthours (kWh) annually
to power municipal water systems [16]. Even in the absence
of direct energy generation, water-based infrastructure can
leverage existing tanks to elevate water in off-peak hours and
allow systems to run off gravity during on-peak hours. Such
peak shaving is an important technique to improve system-
wide energy efficiency [17].

Here, we present a simple and universal algorithm for man-
aging behind-the-meter (BTM) energy storage and pumped hy-
dro systems. We use a Markov Decision Process to store power
(fill tanks) during low-demand hours and discharge power
(empty tanks) during high-demand hours. We dynamically
control the charge and discharge rates with 15-minute granu-
larity to manage assets in conjunction with standard demand
billing practices. As such, we maximize BTM peak shaving
to reduce customer costs and grid capacity requirements. We
present simple inputs which are easily defined for real-life
battery, PHS, or other energy storage systems. We validate
the peak shaving optimization algorithm using data from a
commercial building.

II. ENERGY STORAGE MODEL

In this section, we describe our optimization approach for
BTM peak shaving. Because of its ability to align with elec-
tricity billing practices, we employ the discrete-time Markov
Decision Process (MDP) [18]. MDP provides a mathemati-
cal framework to execute a decision-making strategy which
discretely controls predictable and partly random outcomes.
Past works demonstrated the effectiveness of MDP in diverse
applications including utility resource management, third-
party supply chains, and customer service [19]. In testing
our algorithm, we derive increments of energy demand from



TABLE I
THE LIST OF PARAMETERS AND VARIABLES

Parameters and Variables
JPeak Peak demand
Jmax Maximum demand
tr Charging threshold
D Discharge factor
V0 Initial energy amount

Vmax Maximum energy amount
Vmin Minimum energy amount
bmax Maximum discharging rate
bmin Minimum discharging rate
ep Peak demand interval
b(t) Discharging rate at time t
J(t) Demand at time t
a(t) Action at time t
S(t) State at time t
v(t) Energy amount in the system at time t

continuous energy usage data to yield a series of discrete time
states that is well-suited for MDP-based controls.

A. Overview of the Energy Storage Model

The MDP optimization provides a signal to control the state
of the storage system with the objective to shave the peak
load of the BTM energy account. The technology-agnostic
algorithm can serve batteries, PHS facilities, municipal water
networks, and more. The MDP considers a single-day scale,
assuming that energy will always be abundant/cheap in off-
peak hours and scare/expensive in on-peak hours. Before each
day, the BTM demand is forecasted to provide a signal for
MDP optimization. The optimization depends on the so-called
charging threshold, an activation parameter which classifies a
given time unit as on- or off-peak. The energy storage system
will charge or discharge based on how the BTM load compares
to the threshold value. This model can manage energy storage
with fast response times and limited energy capacities. It is
easily tuned to consider a specific system without compro-
mising the accuracy of the optimization procedure.

B. Static Parameters

Pursuant to managing the energy storage every day, we
assume that an off-peak demand period (e.g. overnight) always
follows a peak demand period (e.g. afternoon). Additional
constraints can allow for multi-day discharge if excess energy
is unavailable. We dynamically tune our energy storage control
throughout the working time to best satisfy the objective
of reducing peak demand. This simplifies against prior ap-
proaches that account for dynamic energy price fluctuations,
since end-use consumers are not necessarily exposed to market
prices and realize significant cost savings by shaving peak
consumption. It also ensures demand management that is
universally online, since monthly billing cycles mean that a
single failure can obviate a prior month of savings.

The list of parameters used to characterize the model is
summarized in Table I. These parameters are deliberately
technology-agnostic. Energy may refer to the charge state of an
electric battery, the fill level of a water tank, or the temperature
of a thermal battery; charge rates may be determined by
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Fig. 1. Relationships between states and actions.

inverter systems, water tank heights, or heat transfer elements.
Even in the absence of a hydroelectric generator, municipal
and industrial water systems are within the scope of this
energy optimization due to the ability to shift load by pre-
pumping water into elevated tanks and reducing subsequent
energy inputs.

C. State Variables

Let T = t0, t1, ..., tt be the time set within a day and let
∆t denote the increment between tt and tt−1. We define St =
(fpeak, J(t), v(t), b(t)) as a vector of time t decision variables.
fpeak is the peak demand identifier, a binary factor set to
fpeak = 1 when J(t) ∈ JPeak. At all other times, fpeak = 0.
We define JPeak = {J(t)|J(t) < Jmax × tr}, where J(t) is
the current demand at time t, v(t) is the current energy amount
at time t, and b(t) is the power injected by the storage system
at time t.

At every time, the storage system will charge, discharge, or
do neither as per best satisfying the peak-shaving objective.
The system will ingest energy when S(t) satisfies the con-
ditions fpeak = 0, J(t) ̸= JPeak, v(t) < Vmax, b(t) < 0.
The system will discharge energy when S(t) satisfies the
conditions fpeak = 1, J(t) = JPeak, Vmin < v(t), b(t) > 0.
Finally, the system will hold its current energy level when S(t)
satisfies the conditions fpeak = 1, J(t) = JPeak, Vmin =
v(t), b(t) = 0. This holding condition means that the storage
system is fully energized or de-energized and awaiting a more
optimal time to switch states.

D. Actions

At every time step t, the storage management decision is
given by the vector a(t) = (edct , ect), where edct represents
energy discharge and ect represents energy charge at time
t. The mutually exclusive actions capture the charge and
discharge rate of the storage system. A positive value of at
means the storage system injects energy into the BTM load,
relieving strain on the grid. A negative value of at means
the storage system ingests energy for future injection. The
algorithm executes one of four actions: begin charging ac,
where a(t) = (edct = 0, ect); begin discharging adc, where
a(t) = (edct , ect = 0); halt charging or discharging, where
a(t) = (edct = 0, ect = 0); and maintain previous state a0,



where a(t) = at−1. The decision states are constrained by
requiring that the total amount of energy stored in the device
does not exceed its energy capacity: Vmin < v(t) < Vmax.
The relationships between states and actions are illustrated in
Figure 1.

E. State Transition Function

The energy in the storage system v(t) evolves according to
the following transition equations v(t+1) = v(t) + b(t). The
energy amount at time t+1 is decided by the energy amount at
time t and the charging or discharging amount during time t.
For simplicity, energy transduction is considered lossless and
the storage mechanism is unconstrained by cycling frequency.
These assumptions are more valid for PHS than for battery
systems and can be modified as needed.

F. Constraints

The on-peak demand interval is defined as the time period
where the BTM load exceeds the value of the charging
threshold multiplied by the maximum demand: tr × Jmax:

JPeak = {J(t)|J(t) > tr × Jmax}. (1)

The current power remaining in the storage system is
determined by initial energy in the storage system and the
power ingested/injected by the storage system:

v(t) = V0 −
T∑

t=1

b(t). (2)

The current power remaining in the storage system is
constrained by the system’s capacity limits:

Vmin < v(t) < Vmax. (3)

G. Objective Function

The objective function’s goal is to shave the maximum
BTM demand by discharging energy during the on-peak period
and recharging energy during the off-peak period. The peak
shaving achieved in time t is given by:

Gπ
t =

{
|J(t)− b(t)− tr|, t ∈ T peak,

−|J(t)− b(t)− tr|, otherwise.
(4)

Because the storage system profit is directly related to the
maximum BTM load, the optimized system profit will be:

P =

t=T∑
t=1

G(t)(t ∈ T peak). (5)

In the profit formulation, we neglect time-sensitive energy
rates because these differences are often small when compared
to peak demand costs. Since energy is cheaper in off-peak
periods, the profit estimations undersell the complete financial
incentive for optimized energy storage.

The objective for each time t is to determine an optimal
policy π∗ that satisfies:

Gπ∗

t (S(t), a(t) = sup
π∈Π
{Gπ

t (S(t), a(t)}. (6)

Algorithm 1 Storage optimization algorithms
Input: Predicted energy demand series: J =
{J(1), J(2), ..., J(t)}; Discharge threshold: tr; Maximum
charging rate: bmax; Minimum charging rate: bmin.

Output: Action series: A = {a(1), a(2), ..., a(t)}
Initialisation :

1: Jmax = max({J(1), J(2), ..., J(t)})
2: Jpeak = tr × Jmax

3: for for each j in J do
4: if (j > Jpeak) then
5: Gπ

t = |J(t)− b(t))− tr|
6: π∗ = argmaxπ Gt(S(t), a(t))
7: a(t)← argmaxa(t)∈AS(t)

Gπ∗

t (S(t), a(t))
8: S(t+ 1)← π∗(S(t), a(t))
9: else

10: Gπ
t = −|J(t)− b(t)− tr|

11: π∗ = argmaxπ Gt(S(t), a(t))
12: a(t)← argmaxa(t)∈AS(t)

Gπ∗

t (S(t), a(t))
13: S(t+ 1)← π∗(S(t), a(t))
14: end if
15: end for
16: return A = {a(1), a(2), ..., a(t)}

H. Solution Technique

Due to the dimensions of the problem, states, decisions, and
continuous random variables in the model, finding an exact
solution to our situation is not practical. Therefore, we solve
the peak shaving problem in two stages. In the first stage, we
use forecasted data to find the proper charging threshold tr
and determine the optimal activation window for the energy
storage system. In the second stage, the external condition and
decision variables are estimated, with next time actions solved
using the inverse induction method. Thus, we find the optimal
strategy and objective function value for each case.

1) The first stage: It is crucial to decide the proper value of
charging threshold tr. A proper value should fully discharge
the energy system at a time-varying rate to best shave the
demand peak. During the off-peak period, the energy system
should recharge to full capacity without establishing a new de-
mand peak. In order to meet these two conditionsthe charging
threshold tr must satisfy the following conditions:

Ec = Edis, (7)

Ec =
∑

t/∈Tpeak

b(t), (8)

Edis =
∑

t∈Tpeak

b(t). (9)

To account for demand forecasts never being 100% precise,
the implemented threshold tr is slightly reduced from the tr
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Fig. 4. 24-Hour Storage Power Rates

value that maximizes the profit. This preserves safe and reli-
able operation while making the model robust to unexpected
environmental stressors.

2) The second stage: As stated, the primary goal can be
formulated as: Gπ∗

t (S(t), a(t)) = maxπ∈Π{Gπ
t (S(t), a(t))}.

When the time is at peak demand, the goal formulation will
be Gπ∗

t (S(t), a(t)) = maxπ∈Π{|J(t) − b(v(t), a(t)) − tr|}.
There are two branch sub-situation under this condition: when
Vmin < v(t) < Vmax, Gπ∗

t = maxπ∈Π{|J(t) − edct − tr|};
When Vmin = v(t) < Vmax, Gπ∗

t = maxπ∈Π{|J(t)− tr|}.
When the time is not at peak demand, the goal formulation

will be Gπ∗

t (S(t), a(t)) = maxπ∈Π{−|J(t)−edct −tr|}. There
are also two branch sub-situation under this condition: when
Vmin < v(t) < Vmax, Gπ∗

t = maxπ∈Π{−|J(t) − edct − tr|};
When v(t) = Vmax, Gπ∗

t = maxπ∈Π{−|J(t)− tr|}.
From all above situations, the policy, the action, and the

next time state are described as:

π∗ = argmax
π

Gt(S(t), a(t)), (10)

a(t)← arg max
a(t)∈AS(t)

G(t)π
∗
(S(t), a(t)), (11)

S(t+ 1)← π∗(S(t), a(t)). (12)

III. EXPERIMENT RESULTS

In this section, we show how our algorithm manages an
energy storage system deployed behind a typical commercial
load. We project BTM cost savings to demonstrate the algo-
rithm’s efficacy and justify investment in energy storage.

A. Parameter Setting

The Table II shows the experimental parameters. We con-
sider a 50 kW / 200 kWh on-site energy system that is initially
at a fully charged state. The 1:4 ratio of maximum power
to total energy is well-suited to demand response programs
with 4-hour curtailment requirements. For PHS, the energy
capacity depends on the height and volume of the water tank
and the maximum power depends on the tank’s outlet. With
these small modifications understood, PHS or municipal water
management can be handled comparably to battery systems.

The daily electricity demand represents a forecast for the
summer week of 2021/8/8 to 2021/8/14. The Energy Demand

TABLE II
PARAMETER SETTING AND THE ELECTRICITY RATES

Interval length 30min
Initial energy percentage in storage system 100%

Maximum energy percentage in storage system 100%
Minimum energy percentage in storage system 0%

Maximum charging rate 50kW
Discharging rate 50kW
Energy Demand $12.97/kW
Energy Delivery $0.05/kWh

cost is determined by the highest kW value recorded in a 30-
minute interval. The Energy Usage cost is determined by the
total kWh consumed from the grid.

B. Experiment

1) One day scale experiment: We first demonstrate how the
optimization algorithm can manage an energy storage system
over a 24-hour period to shave a demand peak. Figure 2
shows the building’s net load before (red) and after (blue)
implementing the optimized energy storage system.

Successful dispatch of stored energy is achieved by lowering
the original net load from a peak demand of 430 kW to
382 kW. Assuming the 48 kW peak demand reduction to be
sustained for the entire month, the energy storage generates
$622 in monthly savings, or $20/day. The algorithm load-
shifts the BTM load to reduce the peak demand area by 8%,
which benefits systemic energy efficiency. Compared to the
original load, the optimized net load increases during low-
usage hours in order to recharge the energy storage system to
full capacity before the start of the day. As reflected in the
demand charge tariff structure, such peak shaving has great
value to the electricity consumer and the electric grid.

Figure 3 shows the capacity factor of the energy storage
system during the optimization procedure in Figure 2. Steady
discharging is seen throughout the day, with a minimum
capacity of 13% at the end of the discharge period. To allow
for easily integrated system protection, a minimum allowable
capacity factor can be established. Steady recharging begins
when the building’s demand drops below the optimized peak;
the system can otherwise be instructed to wait until an off-peak
time as dictated by a time-of-use tariff. For highly efficient
systems, including PHS, there is minimal cost to the energy
arbitrage and we thus neglect energy losses during storage.
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Figure 4 shows the charge and discharge rate of the energy
storage system. Between the hours of 8 - 18 the discharge rate
is dynamically tuned to best smooth the jagged original energy
peak seen in Figure 2. The dynamic discharge is a key feature
of the present algorithm and ensures that the customer and
the electric system internalize the most value from the storage
resource. The maximum charge rate (50 kW) is evident by the
flat regions of the curve and is easily tuned to conform to a
real system’s parameters (Table II).

2) One week scale experiment: We next demonstrate how
the 24-hour procedure scales to longer-term system manage-
ment by considering 6 days of data.

Figure 5 shows how the optimization algorithm shaves peak
load every day. The algorithm establishes a reduced demand
peak and then ensures that it is not exceeded on any subsequent
day, as seen by the recurrence of flat optimized demands
in every peak interval. Such an approach is imperative to
internalize monthly savings, as any single-day optimization
error would re-establish a high peak.

Figure 6 depicts the capacity factor of the energy system as
it operates through the week. The energy storage is recharged
to full capacity every night in order to provide resilience and
ensure that any daily peak can be shaved. On relatively low-
usage days, the system is managed efficiently and discharges
by less than 25% (e.g. hour 110). This feature supports system
longevity by ensuring that the energy asset is not overused.
Alternatively, the excess capacity could be further monetized
by selling the energy into day-ahead demand response or
ancillary service energy programs.

Figure 7 highlights how smart and time-dependent
charge/discharge rates are preserved through the week. The
dynamic charging rates allow the system to accommodate
random or unanticipated events while optimally managing
the net load and storage system capacity. It is seen that
the algorithm occasionally instructs for maximum discharge
rates (-50 kW) when on-site demand is highest and typically
instructs for maximum charge rates (50 kW) during off-peak
times. At the transition between peak and off-peak intervals,
the power rates can fluctuate between charging/discharging.

3) Impact of the maximum power rate: To explore how
the model can inform on storage system sizing, we compare
the 50 kW / 200 kWh system to other power/capacity sizes,
specifically 200/200, 100/400, and 400/400. Note that such

larger systems require more costly inverters (or comparable
pieces) and volumes of storage elements. From Figure 8, we
can see that the original system performs comparably to the
larger (more expensive) alternatives. With a constant 200 kWh
energy capacity, sizing a 50 kW inverter up to 200 kW is not
a justifiable investment for peak-shaving purposes. Similarly,
the 2x system size increase to 100/400 only yields a 70 kW
reduction in the peak demand (1.46x when compared to the
original size). Doubling the size of the energy storage system
does not provide 2x savings because an energy duration limit
is introduced. In other words, the widening of the demand peak
below the 380 kW level means that the 400 kWh capacity limit
(rather than the 100 kW power limit) precludes the system
from providing sufficient energy for 2x peak shaving when
compared to the base case.
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4) Impact of the discharge threshold: To highlight the
importance of peak and off-peak classification, we conduct
experiments on the impact of the discharge threshold value.
The below figures show the comparison results among our
balanced threshold (88%) versus tresholds at 90% and 70% of
the maximum net load.

Figure 9 shows the net load and raw net load between three
different thresholds. When the threshold is too low (70%),
the energy storage system is overloaded and the energy is
exhausted before the peak period ends. On the contrary, when
the threshold is too high (90%), the energy storage system is
underutilized and retains much energy after the peak demand
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period has passed. These observations are made clear in Fig-
ure 10 and Figure 11. The data demonstrate that only a narrow
range of threshold values can balance the competing goals of
minimizing demand spikes while preventing overloading of
the system.

IV. CONCLUSION

A Markov decision process-based optimization algorithm
has been demonstrated for behind-the-meter energy storage
systems. The algorithm considers a building’s demand profile
and the size of an energy storage system to manage charging
and discharging for peak shaving. With everyday shaving of
a building’s peak demand, the algorithm can reduce on-site
electricity costs and systemic peak loads on the grid. We
further exploit the algorithm to investigate optimal energy
storage system sizing. We show how the building’s demand
profile will dictate the optimal system size and how energy
duration limits mean that bigger is not always better. Finally,
we show how the classification of a time increment as being
on-peak or off-peak is the crucial parameter driving successful
system optimization. This technology-agnostic optimization
can serve battery energy storage systems as well as pumped
hydro energy storage, thermal energy storage, and municipal
water infrastructure with distributed and elevated tanks. Future
works can explore how co-optimization with other energy-
intensive assets (e.g. HVAC, lighting, cold storage) or with
cues from the electric grid operator (e.g. demand response
in wholesale energy or ancillary service programs). These
innovations help project and deliver a maximized return on
investment for energy storage solutions.
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